Model Predictive Control of Material Volumes with Application to Vortical Structures

Alex Tsolovikos, Saikishan Suryanarayanan, Efstathios Bakolas, and David Goldstein

Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

AIAA Journal, 2021

Large-Scale Motions in Turbulent Boundary Layers

- Turbulent flows: dominated by motions with *temporal* and *spatial* coherence
- Outer region of turbulent boundary layers:
 - Dominated by large-scale and very large-scale motions (LSMs/VLSMs)
 - Bulges with sizes $\sim \delta$ (boundary layer thickness)
- LSMs contain:
 - $\,40-65\%$ of turbulent kinetic energy
 - 30-50% of Reynolds shear stresses
 - Transport momentum
- Goal: Move LSMs toward the wall to increase near-wall mixing

High streamwise velocity structures. (Sillero, J., PhD Thesis, 2014)

Moving Fluid Volumes using a Model-Based Controller*

• Direct Numerical Simulation for targeting fluid volumes

DMDcsp Model for flow dynamics

Gaussian Mixture Model for targets

*A. Tsolovikos et al. "Model Predictive Control of Material Volumes in Wall-Bounded Flows With Application to Vortical Structures". In: *AIAA Journal, in press* (2021).

Alex Tsolovikos et al.

Model Predictive Control of Material Volumes with Application to Vortical Stru

Model Predictive Control of Fluid Volumes

- Model Predictive Controller:
 - 1. Predict trajectory of target using GMM
 - 2. Find input that induces downwash at predicted target locations (optimal output tracking)

Model Predictive Control of Vortical Structures

 Targeting vortical structures instead of volumes results in increased near-wall mixing:

Alex Tsolovikos et al

Model Predictive Control of Material Volumes with Application to Vortical Stru

