Sparsity-Promoting Dynamic Mode Decomposition with Control

Alex Tsolovikos, Efstathios Bakolas, Saikishan Suryanarayanan, and David Goldstein

Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

IEEE Control Systems Letters, 2021

High-Dimensional Systems

- Systems with thousands/millions of states
- Example: Fluid Flows
 - Infinite-dimensional systems
 - Governed by the Navier-Stokes partial differential equations:

$$\begin{split} & \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \boldsymbol{u}) = 0 \\ & \frac{\partial}{\partial t} (\rho \, \boldsymbol{u}) + \nabla \cdot (\rho \, \boldsymbol{u} \otimes \boldsymbol{u}) = -\nabla p + \nabla \cdot \boldsymbol{\tau} + \rho \, \boldsymbol{g} \end{split}$$

- Dynamic Mode Decomposition:
 - Find a low-dimensional state space
 - Approximate low-dimensional dynamics with a linear system (easier to control)
 - Use only data

Dynamic Mode Decomposition: Model Reduction

• Collect data:

Proper Orthogonal Decomposition

 Low-dimensional linear subspace spanned by the columns of Uq:

Dynamic Mode Decomposition: Linear Dynamics

• Fit linear dynamics for η_k :

$$\boldsymbol{\eta}_{k+1} = F \boldsymbol{\eta}_k + G \mathbf{u}_k \Rightarrow$$

$$\boldsymbol{U}_q^\top \mathbf{y}_{k+1} = F \boldsymbol{U}_q^\top \mathbf{y}_k + G \mathbf{u}_k \Rightarrow$$

$$\boldsymbol{U}_q^\top \mathbf{Y}' = F \boldsymbol{U}_q^\top \mathbf{Y} + G \mathbf{U} \Rightarrow$$

$$\begin{bmatrix} F & G \end{bmatrix} = \boldsymbol{U}_q^\top \mathbf{Y}' \begin{bmatrix} \boldsymbol{U}_q^\top \mathbf{Y} \\ \mathbf{U} \end{bmatrix}^\dagger$$

• Eigenvalue decomposition of F:

 $FW = W\Lambda$

- Eigenvectors: $W = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_q \end{bmatrix}$

- Eigenvalues:
$$\Lambda = \text{diag}\{\lfloor \lambda_1 \cdots \lambda_q \rfloor$$

$$\Phi = U_q W$$

• DMD Dynamics:

where

$$\boldsymbol{\psi}_k = W^{-1} \boldsymbol{\eta}_k pprox W^{-1} U_q y_k$$

 $\Gamma = W^{-1}G$

POD vs DMD

• POD Modes:

$$U_q = egin{bmatrix} egin{array}{c|c} \mathbf{v}_1 & \cdots & \mathbf{v}_q \ \mathbf{v}_1 & \cdots & \mathbf{v}_q \ egin{array}{c|c} \mathbf{v}_1 & \cdots & \mathbf{v}_q \ \mathbf{v}_1 & \cdots & \mathbf{v}_q \ \mathbf{v}_1 & \cdots & \mathbf{v}_q \ \mathbf{v}_2 & \cdots & \mathbf{v}_q \ \mathbf{v}_1 & \cdots & \mathbf{v}_1 & \cdots & \mathbf{v}_1 \ \mathbf{v}_1 & \mathbf$$

- Real vectors
- Modes decompose space based on energy (\mathcal{L}_2 norm)
- Ordered by their energy content

• DMD Modes:

$$\Phi = \begin{bmatrix} \phi_1 & & \\ \phi_1 & \cdots & \phi_q \\ & & \\ & & \\ & & \\ \end{bmatrix} \in \mathbb{C}^{n_y \times q}$$
$$\underbrace{\psi_{k+1} = \Lambda \psi_k + \Gamma \mathbf{u}_k}_{\mathbf{y}_k \approx \Phi \psi_k}$$

- Complex (in general) vectors
- Modes decompose space based on frequency and growth/decay rate (eigenvalues)
- No apparent ordering

Sparsity-Promoting DMD with Control*

- Since Λ is diagonal, we can write:

$$\mathbf{y}_{k+1} \approx \Phi(\Lambda \boldsymbol{\psi}_k + \Gamma \mathbf{u}_k)$$
$$= \sum_{i=1}^{q} \boldsymbol{\phi}_i \left(\lambda_i \boldsymbol{\psi}_{i,k} + \Gamma_{i,:} \mathbf{u}_k\right)$$

• Weight the contribution of each DMD mode ϕ_i by $\alpha_i = 1$:

$$\mathbf{y}_{k+1} \approx \sum_{i=1}^{q} \alpha_{i} \phi_{i} \left(\lambda_{i} \psi_{i,k} + \Gamma_{i,i} \mathbf{u}_{k} \right)$$

- Stack everything together:
 - $\mathbf{Y}' \approx \Phi \operatorname{diag}\{ \boldsymbol{\alpha} \} \mathbf{R}, \quad \mathbf{R} = \Lambda \Phi^{\dagger} \mathbf{Y} + \Gamma \mathbf{U}$
- Sparsity-Promoting Optimization:

$$\min_{\boldsymbol{\alpha}} \left\| \mathbf{Y}' - \Phi \operatorname{diag} \{ \boldsymbol{\alpha} \} \mathbf{R} \right\|_{\mathrm{F}}^{2} + \varepsilon \left\| \boldsymbol{\alpha} \right\|_{0}$$

- Approximate data with linear dynamics
- Promote sparsity: approximate \mathcal{L}_0 norm with reweighted \mathcal{L}_1 norm to make problem convex (some elements of α will become 0)

*A. Tsolovikos et al. "Estimation and Control of Fluid Flows Using Sparsity-Promoting Dynamic Mode Decomposition". In: IEEE Control Systems Letters 5.4 (2021), pp. 1145–1150.

Sparsity-Promoting DMD with Control

Sparse Reduced-Order Dynamics

• For some weighting factor ϵ :

$$\boldsymbol{\alpha} = \begin{bmatrix} 1\\1\\0\\\vdots\\0\\1 \end{bmatrix} \longrightarrow \tilde{\Lambda} = \operatorname{diag} \{ \begin{bmatrix} \phi_1 & \phi_2 & \phi_3^0 & \cdots & \phi_{q-1}^0 & \phi_q \end{bmatrix} \\ \xrightarrow{\tilde{\Lambda}} = \operatorname{diag} \{ \begin{bmatrix} \lambda_1 & \lambda_2 & \chi_3^0 & \cdots & \chi_{q-1}^0 & \lambda_q \end{bmatrix} \} \\ \mathbf{y}_k \approx \phi_1 \psi_{1,k} + \phi_2 \psi_{2,k} + \phi_3^0 \psi_{3,k} + \cdots + \phi_{q-1}^0 \psi_{q-1,k} + \phi_q \psi_{q,k} \end{bmatrix}$$

- In general, $n_{\mathrm{x}} \leq q$ DMD modes will survive
- In complex modal form:

$$\begin{split} \tilde{\psi}_{k+1} &= \tilde{\Lambda} \tilde{\psi}_k + \tilde{\Gamma} \mathbf{u}_k \\ y_k &\approx \tilde{\Phi} \tilde{\psi}_k \end{split}$$

In real modal form:

$$\begin{aligned} \mathbf{x}_{k+1} &= A\mathbf{x}_k + B\mathbf{u}_k \\ \mathbf{y}_k &\approx \Theta \mathbf{x}_k \end{aligned}$$

- $n_y = 35 \times 43 = 1505$ grid points
- p=1501 snapshots are used
- Start with $q=30~{
 m POD}$ modes (99.5% energy)
- Keep only $n_x = 8$ DMD modes

- Online measurements \mathbf{z}_k : $n_z = 2$ out of $n_y = 1505$
- Estimate reduced-order state \mathbf{x}_k from \mathbf{z}_k using a Kalman Filter $\longrightarrow \hat{\mathbf{x}}_k$
- Stabilize flow using infinite-horizon LQG:
 - Stabilize only the 2 dominant modes (at the shedding frequency)
 - Policy: $\mathbf{u}_k^* = K \hat{\mathbf{x}}_k$ than minimizes

$$\mathscr{J}(\pi) = \lim_{N \to +\infty} \frac{1}{N} \mathbb{E} \left[\sum_{k=0}^{N-1} \mathbf{x}_k^\top \mathcal{Q}_r \mathbf{x}_k + \mathbf{u}_k^\top R_r \mathbf{u}_k \right]$$

- Online measurements \mathbf{z}_k : $n_z = 2$ out of $n_y = 1505$
- Estimate reduced-order state \mathbf{x}_k from \mathbf{z}_k using a Kalman Filter $\longrightarrow \hat{\mathbf{x}}_k$
- Stabilize flow using infinite-horizon LQG:
 - Stabilize only the 2 dominant modes (at the shedding frequency)
 - Policy: $\mathbf{u}_k^* = K \hat{\mathbf{x}}_k$ than minimizes

$$\mathscr{J}(\pi) = \lim_{N \to +\infty} \frac{1}{N} \mathbb{E} \left[\sum_{k=0}^{N-1} \mathbf{x}_k^\top \mathcal{Q}_r \mathbf{x}_k + \mathbf{u}_k^\top R_r \mathbf{u}_k \right]$$

- Online measurements \mathbf{z}_k : $n_z = 2$ out of $n_y = 1505$
- Estimate reduced-order state \mathbf{x}_k from \mathbf{z}_k using a Kalman Filter $\longrightarrow \hat{\mathbf{x}}_k$
- Stabilize flow using infinite-horizon LQG:
 - Stabilize only the 2 dominant modes (at the shedding frequency)
 - Policy: $\mathbf{u}_k^* = K \hat{\mathbf{x}}_k$ than minimizes

$$\mathscr{J}(\pi) = \lim_{N \to +\infty} \frac{1}{N} \mathbb{E} \left[\sum_{k=0}^{N-1} \mathbf{x}_k^\top \mathcal{Q}_r \mathbf{x}_k + \mathbf{u}_k^\top R_r \mathbf{u}_k \right]$$

- Online measurements \mathbf{z}_k : $n_z = 2$ out of $n_y = 1505$
- Estimate reduced-order state \mathbf{x}_k from \mathbf{z}_k using a Kalman Filter $\longrightarrow \hat{\mathbf{x}}_k$
- Stabilize flow using infinite-horizon LQG:
 - Stabilize only the 2 dominant modes (at the shedding frequency)
 - Policy: $\mathbf{u}_k^* = K \hat{\mathbf{x}}_k$ than minimizes

$$\mathscr{J}(\pi) = \lim_{N \to +\infty} \frac{1}{N} \mathbb{E} \left[\sum_{k=0}^{N-1} \mathbf{x}_k^\top \mathcal{Q}_r \mathbf{x}_k + \mathbf{u}_k^\top R_r \mathbf{u}_k \right]$$

