

Multiple Model Dynamic Mode Decomposition for Flowfield and Parameter Estimation

Alex Tsolovikos, Saikishan Suryanarayanan, Efstathios Bakolas, and David Goldstein

Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin

San Diego, CA, January 7, 2022

Supported by:

Problem Formulation

• Consider the state of a high-dimensional system of the form

 $\mathbf{y}_{k+1} = f(\mathbf{y}_k, m)$

where:

- $\mathbf{y}_k \in \mathbb{R}^{n_y}$: high-dimensional state (e.g. flowfield)
- $m \in \mathcal{M} \subseteq \mathbb{R}$: model parameter (e.g. angle of attack, pressure gradient, etc.)
- Goal: estimate in real time the full state y_k when
 - We can only measure $\mathbf{z}_k \in \mathbb{R}^{n_z}$ a small subset of the elements of \mathbf{y}_k
 - The model parameter m is unknown
- Model Reduction using Dynamic Mode Decomposition:
 - Find a low-dimensional linear state space model using only data

Proposed approach:

Split the parameter space \mathcal{M} into subsets, train a DMD model on each subset (e.g. a model for different AoA) and perform multiple model estimation

Model Reduction using Dynamic Mode Decomposition

• Collect data for different model parameters *m*:

• Proper Orthogonal Decomposition

• Low-dimensional linear subspace spanned by the columns of U_q :

Model Reduction using Dynamic Mode Decomposition

t

• Fit linear dynamics for η_k :

$$\eta_{k+1} = F \eta_k \Rightarrow$$
$$U_q^{\top} \mathbf{y}_{k+1} = F U_q^{\top} \mathbf{y}_k \Rightarrow$$
$$U_q^{\top} \mathbf{Y}' = F U_q^{\top} \mathbf{Y} \Rightarrow$$
$$F = U_q^{\top} \mathbf{Y}' \left(U_q^{\top} \mathbf{Y} \right)$$

• Eigenvalue decomposition of *F*:

 $FW = W\Lambda$

- Eigenvectors: $W = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_q \end{bmatrix}$

- Eigenvalues:
$$\Lambda = \operatorname{diag}\{\lfloor \lambda_1 \cdots \lambda_q \rfloor$$

• DMD Modes:

$$\Phi = U_q W$$

DMD Dynamics:

where

$$\boldsymbol{\psi}_k = W^{-1} \boldsymbol{\eta}_k \approx W^{-1} U_q y_k$$

Sparsity-Promoting DMD*

 $\bullet\,$ Since Λ is diagonal, we can write:

$$egin{aligned} \mathbf{y}_{k+1} &pprox \Phi \Lambda oldsymbol{\psi}_k \ &= \sum_{i=1}^q oldsymbol{\phi}_i \lambda_i oldsymbol{\psi}_{i,k} \end{aligned}$$

 Weight the contribution of each DMD mode φ_i by α_i = 1:

$$\mathbf{y}_{k+1} pprox \sum_{i=1}^q lpha_i oldsymbol{\phi}_i \lambda_i oldsymbol{\psi}_{i,k}$$

• Stack everything together:

 $\mathbf{Y}' \approx \Phi \operatorname{diag}\{\boldsymbol{\alpha}\} \mathbf{R}, \quad \mathbf{R} = \Lambda \Phi^{\dagger} \mathbf{Y}$

• Sparsity-Promoting Optimization:

$$\min_{\boldsymbol{\alpha}} \left(\|\mathbf{Y}' - \Phi \operatorname{diag}\{\boldsymbol{\alpha}\}\mathbf{R}\|_{\mathrm{F}}^{2} + \varepsilon \|\boldsymbol{\alpha}\|_{0} \right)$$

- Approximate data with linear dynamics
- Promote sparsity: approximate \mathcal{L}_0 norm with reweighted \mathcal{L}_1 norm to make problem convex (some elements of α will become 0)

*Tsolovikos et al., "Estimation and Control of Fluid Flows Using Sparsity-Promoting Dynamic Mode Decomposition".

Sparse Reduced-Order Dynamics

• For some weighting factor ϵ :

$$\boldsymbol{\alpha} = \begin{bmatrix} 1\\1\\0\\\vdots\\0\\1 \end{bmatrix} \longrightarrow \tilde{\Lambda} = \operatorname{diag} \{ \begin{bmatrix} \phi_1 & \phi_2 & \phi_3^0 & \cdots & \phi_{q-1}^0 & \phi_q \end{bmatrix} \}$$
$$\boldsymbol{y}_k \approx \phi_1 \psi_{1,k} + \phi_2 \psi_{2,k} + \phi_3^0 \psi_{3,k} + \cdots + \phi_{q-1}^0 \psi_{q-1,k} + \phi_q \psi_{q,k}$$

- In general, $n_x \leq q \text{ DMD}$ modes will survive
- In complex modal form:

$$\begin{split} \tilde{\psi}_{k+1} &= \tilde{\Lambda} \tilde{\psi}_k \\ y_k &\approx \tilde{\Phi} \tilde{\psi}_k \end{split}$$

• In real modal form:

$$\begin{bmatrix} \mathbf{x}_{k+1} = A\mathbf{x}_k \\ \mathbf{y}_k \approx \Theta \mathbf{x}_k \end{bmatrix}$$

Flowfield Estimation using a Single DMD Model

• Estimate the entire flowfield y_k from limited measurements z_k

$$\mathbf{z}_k = E_z \mathbf{y}_k$$

where \mathbf{z}_k is a small subset of the elements of \mathbf{y}_k .

• Reduced-order dynamics:

$$\mathbf{x}_{k+1} = A\mathbf{x}_k + \mathbf{w}_k,$$
$$\mathbf{z}_k = C\mathbf{x}_k + \mathbf{v}_k,$$

where $\mathbf{w}_k \sim \mathcal{N}(0, Q)$ is the process noise and $\mathbf{v}_k \sim \mathcal{N}(0, R)$ is the measurement noise.

Measure $\mathbf{z}_k \rightarrow \mathbf{Estimate} \ \mathbf{x}_k \rightarrow \mathbf{Reconstruct} \ \mathbf{y}_k$

Flowfield Estimation using a Single DMD Model

- Kalman Filter
 - State Prediction:

$$\hat{\mathbf{x}}_k^- = A\hat{\mathbf{x}}_{k-1}$$
$$P_k^- = AP_{k-1}A^\top + Q_e$$

- Measurement Update:

$$K_{k} = P_{k}^{-}C^{\top} \left[CP_{k}^{-}C^{\top} + R_{e} \right]^{-1}$$
$$\hat{\mathbf{x}}_{k} = \hat{\mathbf{x}}_{k}^{-} + K_{k} \left[\mathbf{z}_{k} - C\hat{\mathbf{x}}_{k}^{-} \right]$$
$$P_{k} = \left[I - K_{k}C \right] P_{k}^{-}$$

Flowfield:

$$\hat{\mathbf{y}}_k = \Theta \hat{\mathbf{x}}_k$$

• Estimate error covariances from data:

$$\mathbf{w}_{k} = \Theta^{\dagger} \mathbf{y}_{k+1} - A \Theta^{\dagger} \mathbf{y}_{k} \to Q = \mathbb{E} \left[\mathbf{w}_{k} \mathbf{w}_{k}^{\top} \right]$$
$$\mathbf{v}_{k} = \mathbf{z}_{k} - C \Theta^{\dagger} \mathbf{y}_{k} \to R = \mathbb{E} \left[\mathbf{v}_{k} \mathbf{v}_{k}^{\top} \right] + \sigma_{z} I$$

Flowfield Estimation using a Multiple DMD Model

• If dynamics depend on an (unknown) model parameter $m \in \mathcal{M} \subseteq \mathbb{R}$:

 $\mathbf{y}_{k+1} = \mathbf{f}(\mathbf{y}_k; m)$

• Assume that we also have M sets of measurements:

$$\mathcal{D}_i = \{ (\mathbf{y}^{(j)}, \mathbf{f}(\mathbf{y}^{(j)}; m_i) : j = 1, \dots, p \},\$$

• Compute a sparse DMD model for each dataset:

$$\mathbf{x}_{k+1}^{(i)} = A^{(i)}\mathbf{x}_{k}^{(i)} + \mathbf{w}_{k}^{(i)}, \quad \mathbf{w}_{k}^{(i)} \sim \mathcal{N}(0, Q^{(i)})$$
$$\mathbf{y}_{k} = \Theta^{(i)}\mathbf{x}_{k}^{(i)} + \boldsymbol{\epsilon}_{k}^{(i)}, \quad \boldsymbol{\epsilon}_{k}^{(i)} \sim \mathcal{N}(0, \Sigma^{(i)})$$
$$\mathbf{z}_{k} = C^{(i)}\mathbf{x}_{k}^{(i)} + \mathbf{v}_{k}^{(i)}, \quad \mathbf{v}_{k}^{(i)} \sim \mathcal{N}(0, R^{(i)})$$

M DMDsp models for M different parameters m_i

Flowfield Estimation using a Multiple DMD Model

• Minimum mean-squared error estimate:

$$\hat{\mathbf{y}}_k^{\text{MMSE}} = \sum_{i=1}^M \mu_k^{(i)} \Theta^{(i)} \hat{\mathbf{x}}_k^{(i)},$$

• Model weights: probability of *i*th model being correct

$$\mu_k^{(i)} = p(m = m_i \mid Z^k)$$

- Multiple Model Kalman Filter:
 - Run M Kalman filters one for each model
 - Update model weights:

$$\mu_k^{(i)} = p(m = m_i \mid Z^k) = \frac{p(\mathbf{z}_k \mid m = m_i, Z^{k-1})\mu_{k-1}^{(i)}}{\sum_{j=1}^M p(\mathbf{z}_k \mid m = m_j, Z^{k-1})\mu_{k-1}^{(j)}}$$

 $p(\mathbf{z}_k \mid m = m_i, Z^{k-1}) = \mathcal{N}(\nu_k^{(i)}; 0, S_k^{(i)})$

where

Example: Blasius Boundary Layer with Varying APG

- 2D Blasius boundary layer at $Re_{\delta} = 1400$
- Parameter m: Adverse pressure gradient dp/dx < 0
- Training datasets for:
 - $-m_1 = -12 \times 10^{-3}$
 - $-m_2 = -16 \times 10^{-3}$
 - $-m_3 = -20 \times 10^{-3}$
 - $-m_4 = -24 \times 10^{-3}$
- High-dimensional state: vorticity at an orthogonal grid of size 141 × 39 = 5499
- M = 4 DMDsp models

- Test dataset:
 - Measurements z_k: vorticity at 5 locations near the wall
 - Parameter m is unknown

Example: Blasius Boundary Layer with Varying APG

Model Probabilities

Estimation Error

Example: Flat Plate with Varying AoA

- Inclined flat plate at Re = 250
- Parameter *m*: Angle of attack (AoA)
- Training datasets for:
 - $m_1 = 20^o$ (constant AoA)
 - $m_2 \in (20^o, 30^o)$ (varying AoA)
 - $m_3 = 30^o$ (constant AoA)
- High-dimensional state: vorticity at an orthogonal grid of size $231 \times 135 = 31185$
- M = 3 DMDsp models

- Test dataset:
 - Measurements z_k: vorticity at 3 locations in the wake
 - Parameter *m* is unknown and slowly varying

Measurements

Example: Flat Plate with Varying AoA

Model Probabilities

Estimation Error

Conclusions and Future Work

- We presented a framework for flowfield estimation using multiple DMD models in settings with unknown parameters
- The multiple model approach chooses the DMD model matching the measurements best
- Unknown parameters can also be inferred
- Next steps: use multiple-model approach for closed-loop flow control

alextsolovikos.github.io

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering