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Problem Formulation

• Unknown stochastic nonlinear dynamics

zt+1 = g(zt,ut) + εt

• State measurements from arbitrary control
inputs

• Compute a feedback control policy that
will steer the stochastic state of the
unknown nonlinear system

• Goal: Steer the state mean and
covariance from a given initial
distribution to a target terminal one in
finite time

?

ut

εt

zt zt+1

Training trajectories:
{zt,ut, zt+1}Nt=1
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Learning a Model: Gaussian Process Regression

• Non-parametric regression models

• Distributions over unknown
functions

f(·) : Rn → R

• Advantages:
– Flexible
– Provide uncertainty estimates (model

uncertainties + process noise)
– Degrade gracefully – they know what

they don’t know

• Assume f(·) belongs to a family of
functions with a Gaussian prior:

f(x) ∼ N (f(x | m(x), k(x,x))

• Mean function m(x):
– usually zero, constant, or linear

• Kernel function k(x,x′):
– measures closeness between two

points
– specifies smoothness and continuity

properties of f(·)
• N observations at locations xi

yi = f(xi) + εi, i = 1, . . . , N

with observation likelihood

p(yi | f(xi)) = N
(
yi | f(xi), σ

2
ε

)
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Learning a Model: Gaussian Process Regression
• Marginal observation likelihood:

p(y; X) = N
(
y | m(X), k(X,X) + σ2ε I

)
• Optimize mean/kernel hyperparameters:

Θopt = arg min
Θ

(−log p(y; X))

• Prediction:

p(y∗; x∗,y,X) =

∫
p(y∗,y; x∗,X)dy = N

(
y∗ | µ∗, σ2∗

)
µ∗ = m(x∗) + k(x∗,X)

[
k(X,X) + σ2ε I

]−1
(y −m(X))

σ2∗ = k(x∗,x∗)− k(x∗,X)
[
k(X,X) + σ2ε I

]−1
k(X,x∗)

• Inference: invert N ×N matrix – Does not scale to more than a few
thousand data points
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Scaling GPs to Big Data: Sparse Variational GP∗

• Sparse approximation of GPs

• Introduce inducing locations

Z =
[
z1 · · · zM

]>
, u = f(Z)

where M � N

• Introduce variational posterior

q(f ,u) = p(f | u; X,Z)q(u),

q(u) = N (u |m,S)

where m, S, along with Z,
are variational parameters

• Optimize variational parameters and
hyperparameters: maximize lower
bound L

L = Eq(f ,u)
[
log

p(y, f ,u)

q(f ,u)

]
≤ log p(y | X)

• Lower bound L:
– Factorizes as a sum over training data
– Minimize −L using stochastic gradient

descent
– Scales to big data

• Inference in O(M3)

∗James Hensman, Nicolò Fusi, and Neil D. Lawrence. “Gaussian Processes for Big Data”. In:

29th Conference on Uncertainty in Artificial Intelligence. UAI’13. Bellevue, WA, 2013, pp. 282–290.
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System Identification with SVGPs

• Consider stochastic nonlinear
dynamics:

zt+1 = g(zt,ut) + εt

• Dynamics are unknown, but
we have state observations

yi = g(zi,ui) + εi

at known locations

xi = [zi; ui]

• Data: D = {yi, zi,ui}Ni=1

• Learned dynamics: a multitask SVGP
trained on D, such that

zt+1 = G(zt,ut) + wt

where

G(zt,ut) = µf ([zt; ut])

and

wt ∼ N
(
wt | 0,Σf ([zt; ut], [zt; ut]) + σ2ε

)
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Nonlinear Covariance Steering

• Find an optimal control policy

ut = πt(zt), t = 0, . . . , T − 1

that will take the initial state distribution

E[z0] = µ0, Cov[z0] = Σ0

to a terminal distribution

E[zT ] = µf , Σf − Cov[zT ] < 0

in a finite number of time steps

• Final state: reached with a guaranteed upper
bound on the uncertainty

µ0, Σ0

µf , Σf

?
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Nonlinear Covariance Steering with SVGPs

• For a linear dynamical system

zt+1 = Atzt +Btut

the optimal feedback policy

πt({zi}ti=0) = υt +
t∑
i=0

Kt,izi

is the solution of a semi-definite
program (SDP)

• For the nonlinear SVGP model
we apply a greedy control
algorithm†

• For t = 0, . . . , T :
1. Linearize dynamics around latest

state mean µt and corresponding
input u∗

t

2. Solve the linearized covariance
steering (SDP) from t to T

3. Estimate the next mean µt+1 and
covariance Σt+1 using the Unscented
Transform

†E. Bakolas and A. Tsolovikos. “Greedy finite-horizon covariance steering for discrete-time

stochastic nonlinear systems based on the unscented transform”. In: 2020 American Control

Conference (ACC). IEEE. 2020, pp. 3595–3600.
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Linearization of SVGP Dynamics

• Linearize around z∗, u∗:

zt+1 ≈ A∗zt +B∗ut + d∗

where

A∗ =
∂

∂z
G(z∗,u∗) =

∂

∂[z; u]
µf ([z; u])

[
Inz

0

] ∣∣∣∣z=z∗
u=u∗

B∗ =
∂

∂u
G(z∗,u∗) =

∂

∂[z; u]
µf ([z; u])

[
0
Inu

] ∣∣∣∣z=z∗
u=u∗

d∗ = −A∗z∗ −B∗u∗ +G(z∗,u∗)

• Use automatic differentiation
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Experiments: 4D Nonlinear System

• Consider unicycle car dynamics:

sx,t+1 = sx,t + vtτ cos θt + εsxt
sy,t+1 = sy,t + vtτ sin θt + ε

sy
t

θt+1 = θt + uθtvtτ + εθt
vt+1 = vt + uvt τ + εvt

• Assume dynamics are unknown but
a black-box simulator is available

• Collect data and run stochastic
gradient descent → SVGP
Dynamics

• Number of training data: 16000

• Number of inducing locations: 256

• Mean & kernel functions:

m(x) = const.

k(x,x′) = σ2
f exp

(
−
1

2
‖x− x′‖2L−1

)
• Initial distribution:

µ0 = [0, 0, 0, 1]>

Σ0 = diag([0.1, 0.2, 0.1, 0.1])2

• Target distribution:

µf = [1, 2, 0, 1]>

Σf = diag([0.1, 0.05, 0.05, 0.05]2

• Number of time steps: T = 30
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Experiments: 4D Nonlinear System

• SVGP Model:
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• Exact Model:
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Conclusions and Future Work

• Scalable Gaussian Process predictive models were used for nonlinear
covariance steering of an unknown stochastic nonlinear system

• GP models capture both process noise and model uncertainties, leading to
“cautious” control policies
• Next steps:

– Systems with incomplete state measurements
– Active learning of variational GP models

The code for this work is available at:
https://github.com/alextsolovikos/greedyGPCS
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