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What is a Large-Scale Motion?

e Coherent motions in wall-bounded
turbulent flows

e Characteristics:
o Size in the order of the boundary layer
thickness
o Large fraction of the turbulent kinetic
energy
o Significant contribution to average
Reynolds shear stresses

e Consist of smaller structures (e.g.
hairpin vortices)

z/d

High/low streamwise velocity structures. (Sillero, J., PhD
Thesis, 2014)
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Control Scheme

Separated flow

Flow remains

Actuator attached

Re-energize the boundary layer by moving LSMs toward the wall
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Turbulent Boundary Layer DNS

Q Criterion
isosurfaces colored by
height

Direct numerical simulation of a turbulent boundary layer at Rey = 1100 - 2000 using the
spectral element code Nek5000 | Boundary layer is tripped with random streamwise forcing
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A Closer Look at Velocity Fluctuations
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Side View of Positive Fluctuations
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Side View of Negative Fluctuations
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Model Predictive Control of LSMs

Detect Predict Actuate
Volumes of LSMs to LSM Movement Create downwash when LSM is
target near the actuator
Action =0
0.00
1.0 -0.05
. Tarqet Volume Observation Box i '8‘12 .
0.5 A e J ¥P T =Y.
oo | i e | | o
0 2 4 6 8 10 12 14

X

Reaping the Whirlwind 8



Detect an LSM
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Use the 3D flowfield to directly detect LSMs
(e.g. by low-pass filtering the streamwise velocity fluctuations)
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Predict LSM Trajectory
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Use Taylor’s hypothesis to predict the trajectory of an LSM
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Creating Downwash
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Force Field Distributions (x-y plane) .
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Plasma Actuators™ rlow enrainment
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Figure 1. Sketch of the effect of a dielectric barrier discharge (DBD) plasma actuator in a quiescent ambient

Body Forces of a Plasma Actu ator fluid (left) and in a boundary layer (right).
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Figure 7. Spatial distribution of the wall-parallel (left) and wall-normal (right) components of the forcing term
from the experimental data (top), from the Suzen & Huang model (bottom).

*Brauner, T., Laizet, S., Benard, N. and Moreau, E., 2016. Modelling of dielectric barrier discharge plasma actuators for direct numerical
simulations. In 8th AIAA Flow Control Conference (p. 3774).
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Gaussian Jet: Mid-plane Wall-Normal Velocity
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Gamma Jet: Mid-plane Wall Normal Velocity
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Optimal Output Tracking Control

Uy = argmin[ly(k + N1 = yaes(k + NI}
k

/‘ + YN G 13|+ 11D = yaes (1013

Optimal Control Inputs / \

Jet Magnitude Minimize Control Effort Maximize Downwash

We need a model for predicting the downwash for a given input
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Optimal Output Tracking Control

* 1 —_ 2
Ui = argmin |y(k + N|k) — yges(k % Minimize Control Effort

7 Uk
Optimal Control Inputs - Zfi,ﬁv_l lu(i|k)||% |+ |y (ilk) — ydes(ilk)lle
Jet Magnitude v\
subject to | z(i + 1|k) = Az(ilk) + Bu(i|k)

. . Maximize D h
y(ilk) = Cz(ilk) aximize Downwas
0< u(i|k) <1 ROM Dynamics
z(klk) = z(k) iy

Input Constraints

We need a model for predicting the downwash for a given input
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Sparsity-Promoting DMD with Control

DMDc Reduced-Order Model:
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Use reweighted L1 norm instead
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Tsolovikos et al., Estimation and Control of Fluid Flows Using Sparsity-Promoting Dynamic Mode
Decomposition, IEEE Control Systems Letters, 2021
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Control of Fluid Volumes | Laminar Boundary Layer
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Tsolovikos et al., Model Predictive Control of Material Volumes with Application to Vortical Structures, AIAA Journal, 2021
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Control of Synthetic LSMs | Laminar Boundary Layer
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Control of Synthetic LSMs

Jet + Structure —— Structure Only Jet Only

=953 9.8 6.3 0.8 7.4 7.6 7.9 8.1 8.7 LB

0.4
0.3 g
>
0.2-\ E

oL D VUL B [ 3

0.0 : I
0 4 80 4 80 4 804 80 4 804 80 4 804 8014 80 4 8

w'rms wrms wrms wrms wrms wrms wrms wrms

w'rms wrms

Change in Vorticity Fluctuation RMS when targeting a synthetic LSM

Reaping the Whirlwind 21




Reduced-Order Models for

Downwash Prediction - -  DMDC
DNS
Ensemble
Average

tiIsDMDc

| -  BestPOD
. Projection

lsDMDc + GP*

*To be published
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Reinforcement Learning (No Model Needed)
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Proximal Policy Optimization with LSTM policy and discrete actions (jet is on/off)
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Next Steps

LSMs in an adverse pressure gradient turbulent boundary layer

MPC control of LSMs for separation delay

Large-eddy simulations to speed up computations

Dynamic Mode Decomposition + Gaussian Processes for more accurate
flowfield predictions

e Reinforcement learning for LSM control

alextsolovikos.qgithub.io
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https://alextsolovikos.github.io

